ですが、このテーマを取り上げたき

かけたは、

私が現在専門としてい

す。

ない研究の広がりしての

触媒科学から環境科学へ

工学部・化学応用工学科・助教授 (化学プロセス工学講座

杉き

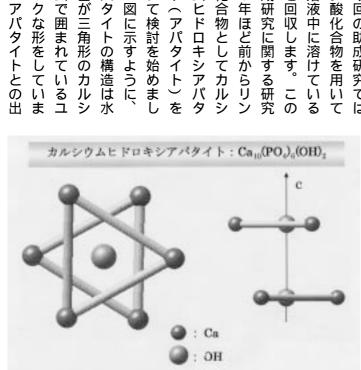
山き

茂紫

題は平成13年の全国市長会からの 境科学の立場から広範囲に検討され ような背景を記述しますと、私が環 る意見」でも取り上げられているた る含鉛廃液が問題といます。 この問 廃棄する車のバッ テリー から流出す ています。 水系から重金属を取り除くことが環 重金属イオンが人体に有害なため、 に、水溶液中に溶けている鉛などの りました。皆さんがご存知のよう に対して研究助成を受けることにな からの鉛イオンの回収技術の開発] 科学振興財団より[バッテリー 科学の専門家のように思われがち 助成対象となったようです。この 自動車リサイクルシステムに関す 廃液中に含まれる鉛については、 本年8月に (財) クリタ水・環境 今回取り上げたバッテリ ·廃液

りを紹介したいと思います。 ひとつの材料を通しての研究の広が る触媒科学における研究からです。 ここでは、私の拙い経験をもとに、

アパタイトとは?


ニークな形をしていま 用いて検討を始めまし イト (アパタイト)を 鉛を回収します。この ウムで囲まれているユ 酸基が三角形のカルシ アパタイトの構造は水 ウムヒドロキシアパタ 酸化合物としてカルシ 助成研究に関する研究 水溶液中に溶けている リン酸化合物を用いて は5年ほど前からリン 今回の助成研究では 図に示すように、

> 活かせないかという思いと、また当 が限られているため、合成した半量 時にさかのぼります。 この研究では - 大学で、アパタイトを触媒とし天 会いは13年前カナダ 時工学研究科にエコシステム工学専 りました。 貴重なサンプルを何とか はサンプル瓶に回収されるだけとな 非常に多くのアパタイトを合成しま 然ガスの主成分であるメタンからエ 攻が新設され工学部が環境科学をさ したが、 難度酸化を達成させる研究を行った チレンや一酸化炭素を生成させる高 触媒として使用できる形状 ウォー ター

パタイトを水溶性重金属の回収の研 究に利用するという、未体験の分野 らに重視するという背景もあり、 に飛び込みました。

学際研究へ

います。 るアプロー チから入っていきまし けないと思いながら、研究に励んで な分野が重要となってくると思いま ることがわかってきました。 ていました。その結果、アパタイト らにどこで聞きつけたか今回の助成 究センターを通して県内の企業、 と言う点で問題があり、地域共同研 部の先生方に相談する事もできまし た。 幸いにアパタイトの研究は薬学 れていたため、後発の私は全く異な して大きな課題に立ち向かう学際的 特有と言われていた重金属の回収機 財団の親企業などからも相談を受け い物質ですが、価格の面を含め実用 能は他の単純なリン酸化合物にもあ すでにこの分野は活発に研究さ 膨大な数の特許・論文が発表さ 私自身も学際的にならないとい いろいろな分野の研究者と協力 歯学部でも行われており、 アパタイトは、ある意味興味深 今後 さ

义 アパタイトの局所構造

ァ