ディプロマ・ポリシーをさらに細分化している場合には、それを項目として用いることができる。

ディプロマポリシー		7-1 Arn≅	±.π67¶	【2. 汎用的技 【3. 態度・志向性】		・ディプロマ・ポリシーをさ 【4. 統合的な学習経験と創		さらに細分化している場合には、それを項目として用いることができる。	
科目名	ティブロマボリシー	(1)課題を解決するために、数学、自然をしたのは、科学、及び電に対している。 大工学に対している はいい はい	(2)電気電気 電気 電気 電気 電気 専門バイル電 知 の まず 子 の は か と 応 し 知 識 と 応 日 か まず 子 の は か と の に か まず 子 の は か と の に か まず 子 の は か と か と か と か まず 子 の は か と か と か と か と か と か と か と か と か と か	能】 地域社会・国際社会で活躍するための、 基礎的・実践的コミュニケーション能力と自ら主体的に	(1)豊かな教 養, 高い倫理 観と強い責任 感を有する。	(2)課題解決の大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、	造的思 (1)世界規模 の産業構造や 社会経済のからで ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	考力】 (2)デザイン能力,及びプロジェクト型研究遂行能力を	科目の教育目標
			グレー	I -の部分は, ○	・◎不要です				人間、文化、社会、自然に関わる幅広い学問領域から、「ものの考え 方・捉え方」を学び、様々な知見を自らの分野に援用し、応用できる感性・知性の修得を目指す。
	歴史と文化				©				・人文科学分野(歴史学、思想、倫理学、文学、芸術、考古学、地理学、文化人類学など)を中心に学ぶ。 ・人間が創造してきた文化や社会の特質、またはそれらの変遷等を学ぶ。 ・様々な地域、時代、分野の人間の営みを学ぶことで、これからの世界で生きていくために必要な、「物事を複眼的に捉える知」を身につける。 ・人間の思考・行動と身体・生命に関わる科学的・倫理的課題についての思考を深める。 ・生命についての基礎的な知識を得て、生命に関わる問題への適切な判
教養科目群	人間と生命				©				断や生命倫理、倫理的であることの意味などの根元的な問を思索することをテーマとし、科学リテラシーと人間・生命の理解を統合的に考える。 ・人文科学分野(哲学、倫理学など)、行動科学分野(心理学、教育学など)、生命科学分野(生物学、生命科学など)を含む複合的な分野を学ぶ。
	生活と社会				©				・社会の現象の理解、人間の集団の特性、社会の成り立ち、それを律する法律、社会を動かしている経済、政治、国際的関わりなどについての理解を深める。 ・社会科学分野(法律学、政治学、経済学、経営学、社会学など)を中心として、医学分野、工学・技術分野などへ裾野を広げる。
	自然と技術				©				・自然の構造や成り立ち、物質の反応の有様、現象のあり方と科学技術の進歩について理解し、さらには科学技術の社会生活への影響などについて考える。 ・技術が社会を動かす時代において、技術の基盤、自然についての理解、技術と環境との調和など幅広く科学リテラシーを身につける。 ・自然科学に工学、医学、歯学、薬学等の応用的な分野を含めることで、現代的な課題を広く学ぶ。
	ウェルネス総合演習				0				・健康で生きがいと人間性に満ちた心身の健全性を意味する「ウェルネス」について、スポーツ、生活科学、文化をテーマにしながら講義と演習、実習により総合的に学び、考える。
			グレー	-の部分は, 0	●不要です				現代社会の諸問題を学び、それらの課題を主体的に捉える態度を身につける。
A. b. a. w. a w	グローバル科目			0	0				・異なる価値観や文化を知り、それらを認め合い、さらに積極的なコ ミュニケーションを図るグローバル人材として必要なことを学ぶ。
創成科学科目群 	イノベーション科目				©			0	・さまざまな領域における創造的思考と、それを実現するための「ものづくり・ことづくり」や「協働推進・プロジェクト推進」のための技法を学ぶ。
	地域科学科目			0	0				・地域問題を、自らの課題として受け止められる公共の精神と、地域における組織人として必要な資質を得ることを目指し、地域創生、地域貢
			グレー	 −の部分は,○	● ○不要です				献の意義などの体験的学習も含めて学ぶ。 大学での専門分野を学ぶ前提となる基礎学力を修得する。
	S I H道場		0	0					
基礎科目群	基礎数学	©							・専門分野の早期体験,ラーニングスキルの習得,学習の振り返り等の 主体的な学習習慣を身につけることなどを学ぶ。
	基礎物理学	0							上所の6 1 日日
	情報科学			0					・情報の取り扱いやその倫理などの情報リテラシーの基本に加え、コンピュータの活用方法を学ぶ。 ・数理・データサイエンス・AIの基礎を学ぶ。
			グレ・	ーの部分は,C T)・◎不要です 				英語や初修外国語の学習を通じて、各言語の運用能力を養成し、日本語とは異なる言語の世界への理解を深めることを目指す。 ・基礎英語力及び英語コミュニケーション力を養い、十分な言語運用力
外国語科目群	英語			©					と自律学習スキルを取得する。 ・基盤英語は、高校までに身につけた英語力の充実を図り、大学で自律的に学習を続けるための基礎力をつくる。 ・主題別英語は、科学・時事・文学・文化などのコンテンツを英語で学び・基盤英語で身につけた英語力と自律学習スキルのさらなる向上を図る。 ・発信型英語は、自信を持って、英語でコミュニケーションをするための話す力と書く力を身につける。
	初修外国語			0					・英語と異なる外国語の運用能力の基礎を固め、その言語の世界における物事の見方や考え方に対する理解を深める。
	STEM概論	©	0	0					理工学教育におけるSTEM(Science, Technology, Engineering, Mathematics)の重要性を理解すること。 専攻する専門分野について理工学の他分野との関係を理解すると共に、理工学全体で俯瞰して捉えることができること。
学科共通科目	STEM演習	©	0	0					課題に対する調査、実務者ヒアリングや現場での体験、グループ討議とその整理・レポート作成を通じて、自ら考える能力、対話力、文章力を身につける。グループ発表を通して、人にわかりやすいプレゼンテーションの方法について学ぶ。
	技術英語入門		0	©					理工学分野の英語を聴く技術を上達させること。 英語で効果的に話す能力を習得すること。実際の専門的な読み書きの技術 を上達させること。 専門的な英語をより深く理解する能力を高めること。
	技術英語基礎1		0	©					学術的・専門的目的のために英語の聴き取りの技術を上達させること。 技術的な用語の組み立てに必要な単語・語彙の理解を深めること。 専門用語の関連定義を理解すること。 より分かりやすく英語を話すという能力を高めること。
	技術英語基礎2		0	©					工学および科学技術で使う英語の文書を書く技術を上達させること。 今考えていることを英語で論理的にまとめること。 英語で話す技術と発表技術を高めること。
	微分方程式1	©	0						一階常微分方程式を求積法により解くことができる。 線形微分方程式に関する基本的性質を理解できる。

・ディプロマ・ポリシーをさらに細分化している場合には、それを項目として用いることができる。 【4、統合的な学習経験と創し

ディプロマポリシー				【2. 汎用的技能】 【3. 態度・志向性】		・ティフロマ・ボリシーをさ 【4. 統合的な学習経験と創 造的思考力】		さらに細分化している場合には、それを項目として用いることができる。 	
科目名		数学,自然科学,及び電子工学に関する確かな活ったがでことがで	(2)電気 野(物で 大) 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	地域社会・国際社会で活躍するための,基礎シュニケーション能力と自ら主体的に	(1)豊かな教 養, 高い倫理 観と強い責任 感を有する。	のた。 きことのでイント をはいましたのでは、 をいまれています。 はいまるによりでする。 はいまるができる。 はいまるができるができる。 はいまるができるができるができる。 はいまるができるができるができるができるができるができるができるができるができるができ	(1)世界規模 の産業構造の 社会経済のかい 化に柔軟が応で き、専門的課 題についての	(2)デザイン能 カ, 及びプロ ジェクト型研 究遂行能力を	科目の教育目標
	微分方程式2	0	0						ラプラス変換とその応用ができる。 簡単な定数係数連立線形常微分方程式が解ける。
	微分方程式特論	©	0						フーリエ解析の初歩を理解する。 フーリエ級数の計算ができる。
	確率統計学	0	0						基本的な確率の計算ができる。 基本的な確率分布が理解できる。
	ベクトル解析	0	0						ベクトルの演算, 空間図形の記述,ベクトルの場の微分が理解できる。 ベクトルの場の積分, 積分諸定理が理解できる。
	複素関数論	0	0						複素微分, 正則関数の概要が理解できる。 留数概念の理解とその応用ができる。
	数值解析	0	0						数値誤差について理解する。 基本的な数値計算法を習得する。
	統計力学	0	0						統計力学の基本的概念を理解し、半導体の原理を始めとする材料物性や工業材料に関する知識を得る。
	量子力学	0	0						シュレディンガー方程式と波動関数の意味を理解する。 波動関数や期待値等を計算することができる。 簡単な系に応用することができる
コース基盤科目 (学科開設科目)	プロジェクトマネジメント基礎			0	0	0	©	©	グループ活動の中で自らの意見を述べ、仲間の意見を理解する能力を身につける。 課題の抽出および解決する能力を身につける。 プロジェクトの立ち上げから終結までを計画して実行する能力を身につける。 成果を公の場で発表する能力を身につける。
	アイデア・デザイン創造					©	0		アイデア・デザインの創造過程を習得する。 自分自身のアイデア・デザインを「新規性」「有用性」「独自性」等のある内容 にブラッシュアップする能力を習得する。 「新規性」「有用性」「独自性」等を書面とできる表現力を習得する。
	アントレプレナーシップ演習					0	0	0	起業家との対話を通じてアントレプレナーシップのより具体的なイメージをつかむ。ワークショップを通じて自ら課題を見つけ、解決するまでのプロセスを体験し、チャレンジ精神、創造力、行動力、判断力など起業家的な精神と資質・能力を習得する。
	アプリケーション開発演習						©		コンピューターの簡易なアプリケーション開発ツールを利用して、CG、VR、ゲームなどのアプリケーション開発の方法を学び、実際に開発を行う実習を通じて、コンピューターを利活用する能力を身に着ける。
	短期インターンシップ				0	0	0	0	事前学習により、社会人として必要な知識を理解し、社会人、職業人として相応しい行動がとれる。 学外研修で実習テーマの内容を理解するとともに、課題解決に努め、これらの内容を報告書にまとめる能力を養う。
	実践力養成型インターンシップ			0		0			徳島県内の企業・団体が抱える課題に対して、受入先と学生が協働してミッションの達成を目指す、実践型のインターンシッププログラムにより、社会人としての素養(職業人意識)やコミュニケーション力を磨く。
	ニュービジネス概論			0		0	0		ベンチャービジネスを起業するために必要な知識を習得するとともに、ビジネスプランを作成できるようになることを目標とする.
	労務管理				©	0			組織の労務管理の基本と各自の立場に応じた対処方法について理解する。最新の労働環境の動向を理解する。
	生産管理				0				生産管理の各手法を概略理解する。 企業マネジメントの中での位置づけを概略理解する。
	電気エンジニアリング入門	0	0	0	0				電気電子工学におけるエンジニアリングのための基礎的な知識を理解する エンジニアリングデザインのための技術と手法を理解する
	電気数学演習	©	0						高校で学習した数学のうち、特に、2次関数・三角関数・微分・積分・集合と論理を十分理解し、それらを用いた種々の問題を解くことができる。 電気回路の基礎となる数学、特に、行列・ベクトル・複素数・正弦波等を理解し、それらに関する問題を解くことができる。
	電気回路1及び演習	©	0						直流電源,抵抗素子とその直並列接続,オームの法則,キルヒホッフの法則,回路解析手法,重ね合わせの理を理解し,それらを用いて直流回路解析ができる。 交流電源(正弦波電源),キャパシタとインダクタの素子特性,記号法を用いた解析手順を理解し,それらを用いて交流回路解析ができる。また電力の求め方を理解している。 等価回路,ブリッジ回路,周波数特性,整合等の回路解析に有用な諸定理を理解し、それらを回路解析に利用できる。
	電気回路2及び演習	©	0						相互インダクタ・制御電源等の相互結合素子の特性を理解し、それらを含む 回路を解析できる。2端子対回路の考え方を理解し、1次側と2次側の電圧・電 流の関係式を記述できる。 対称3相交流電源の性質を理解し、その電源に対称あるいは非対称な3相 負荷が接続された回路を解析できる。また3相交流回路の電力の求め方を理 解している。 素子定数の空間的な広がりを考慮した分布定数回路(特に伝送線路)を解析 できる。また、無損失等の様々な条件下での特性を理解し、それらを伝送線 路解析に利用できる。

・ディプロマ・ポリシーをさらに細分化している場合には、それを項目として用いることができる。 |【4 統合的な学習経験と創|

	~ ,~c~2!!!>		7 . 4-34 4-3				【4. 統合的な学習経験と創		さらに細分化している場合には、それを項目として用いることができる 	
科目名		(1)課題を解決するため自然をは、数学、及びでは、科学、アンスでは、大学、アンスでは、大学のではないが、大学のでは、大学のでは、大学のでは、大学のではないが、ないが、大学のではないが、ないが、大学のはないが、はないが、はないが、はないが、はないが、はないが、はないが、はないが、	(2)電気電子 工学の専門が イスルギーショ 電子 知道を できまれる しょう	能】 地域社会・国際社会で活躍するための、基礎的・実践的コミュニケーション能力と自ら主体的に	(1)豊かな教養, 高い倫理観と強い責任感を有する。	(2)課題解決の考え,がでイデーをいます。 (2) (2) (3) (4) (4) (5) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	造的思 (1)世界規模 の産経済所の 社会経軟が応 化に確に門的で き、についた 国 自律的応用	!考力】 (2)デザイン能力,及びプロジェクト型研究遂行能力を		
	電気磁気学1及び演習	©	©						電磁気の基本的な概念を理解する。電気抵抗の考え方を理解する。 ガウスの法則を理解して、電界と電位の計算ができる。 電気影像法による静電界の解析方法を理解する。 誘電体の性質を理解し、様々なコンデンサの静電容量、静電エネルギーの計 算ができる。	
	電気磁気学2及び演習	©	©						与えられた電流に対してこれより生じる磁界をアンペアの周回積分の法則または ビオ・サバールの法則を用いて計算できること, 物質中の磁束密度, 磁性体と磁界の関係を理解できること, インダクタンスと電磁誘導の基礎概念が理解できること, マクスウェル方程式の導出と電磁波の伝搬の様子が理解できることを到達目標とする。	
	半導体工学基礎	©	©						半導体の帯理論について説明できる。 半導体の電気伝導について説明できる。 pn接合の基礎について説明できる。 金属-半導体接触の基礎について説明できる。	
	エネルギー工学基礎論	0	0		0				エネルギーとエネルギー工学の基礎を理解する。 エネルギーとエネルギー問題と環境問題の関連について知る。	
	基礎制御理論	©	©						動的システムの伝達関数表現、状態方程式表現を理解し、システムの時間応答、周波数応答を求めることができる。 制御系の安定性を調べることができる。また、制御系設計仕様、および制御系設計の基礎的事項を修得している。	
	プログラミング基礎	©							C言語の文法を理解する。 C言語プログラムの読解力を修得する。 C言語プログラミング手法を修得する。	
	電子回路基礎	©	©						ダイオード、トランジスタの動作を説明できる。 基本増幅回路の動作を図式解法、等価回路を用いた解析法で予測できる。 各種増幅回路の回路動作を予測できる。 発振回路の構成法とその発振原理を説明できる。	
	電気電子工学基礎実験	©					0		目的, 原理および方法を理解すること。 器具・装置を正しく操作でき, 必要なデータを取れること。 データを表や図に整理して, 結果を吟味し, 考察を加え, 独自のレポートにま とめられること。	
	情報通信基礎	0	0						信号の時間領域、周波数領域での解析ができる。 信号および情報伝送の基礎理論を修得する。	
	過渡現象	©	0						素子の性質と回路の接続状況から回路の状態方程式を導き出すことができる。保存則や状態の拘束を含む場合も取り扱うことができる。 直接的な方法とラプラス変換を用いた方法により、状態方程式を解くことができる。保存則が成立する場合や強制退化が起こる場合も取り扱うことができる。	
	電子物理学	0	©						運動方程式を用いて、電界および磁界中の電子の運動を解析でき、関係する物理現象を理解する。 代表的なマイクロ波電子管の構造と原理が説明でき、プラズマの基礎的性質とその応用を理解する。	
	電気機器1	0	©						変圧器の基本原理と基本動作および活用法が理解できること。 変圧器の諸特性が計算できること。 誘導機の基本原理と基本動作および活用法が理解できること。 誘導機の諸特性が計算できること。	
	電気機器2	0	0						同期発電機の構造,原理,基本特性等について修得する。 直流電動機の構造,原理,基本特性等について修得する。	
	電力系統工学	©	©						電力系統工学の基礎について説明できる。 電力系統の構成機器,設備等を説明できる。 電力系統の電力・周波数制御を説明できる。 電力系統運用を説明できる。 故障解析を説明できる。 電力系統の安定度を説明できる。	
	計測工学	©	©						計測の基本的概念を理解する。 電気諸量の測定標準,単位を理解する。 電圧・電流の測定方法の基礎を修得する。 電圧・電流のディジタル測定,その他の電気・磁気諸量の測定方法の基礎を 修得する。 高周波計測の基礎を理解する。	
	制御理論		©						動的システムの状態の概念を理解している。また、状態遷移行列を求め、動的システムの過渡応答を計算することができる。 動的システムの安定性を調べることができ、可制御性、可観測性といった性質を調べることができる。また、状態フィードバック制御の概念を理解している。	
	論理回路	0	©						ディジタル符号による情報の表現法、各種演算について理解する。 論理関数の表現、基本法則、簡単化、および状態遷移について理解する。 論理回路の設計法について理解する。	
	電気電子工学創成実験	0	©		0		©	0	半導体デバイスの試作とその試作したデバイスの特性評価を通じて、半導体プロセスの基本的原理の理解し、プロセス上の問題点の改善策の提起能力を養う。またデバイスの基本動作原理を理解する。 半導体デバイスの入出力特性から得られる回路モデルを用いたアナログ電子回路設計法を理解し、設計した回路の作製とその特性測定を通して、アナログ電子回路のもの作りを体験する。 ディジタルICの動作特性を理解し、FPGAプログラミングによる論理回路合成を通してディジタル回路設計手法を習得する。	

・ディプロマ・ポリシーをさらに細分化している場合には、それを項目として用いることができる。 |【4 統合的な学習経験と創|

ディプロマポリシー		【1. 知識•理解】		【2. 汎用的技 【2. 能由, 主向性】			【4. 統合的な学習経験と創		さらに細分化している場合には,それを項目として用いることができる。 	
科目名	7.4.7.日マルリン―	(1)課題を解決するに、数学、自然を以外では、数学、自然では、科学、子工学のでは、対学のでは、	(2)電気電子工学の専門バイス,電子の実施を表すが、電子の性が、電子のでは、ボースの電力のでは、大きないないは、ないないは、ないないは、ないないは、ないないはないは、ないないないはないはないはないはないはないはないはないはないはないはないはないは	能】 地域社会・国際社会で活のの、基礎のようによりの。 基礎のは、またりでは、 ものでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	(1)豊かな教 養,高い倫理 観と強い責任 感を有する。	(2)課題解決のために自ら考え、行動することがでイデンにより新しいものを創り出すことがで	(1)世界規模の産業構造の企業を経済のでは、東門的課題についての	ジェクト型研 究遂行能力を		
	電気電子工学実験1	0	©		0		0		各実験テーマについて、実験対象の特性および原理を理解し、説明することができる。 実験に必要な計測器や機器等を正しく取り扱うことができる。 計画的かつ安全に実験を実行し、実験対象の特性の検証に必要なデータの 収集ができる。 文章に加え図や表を併用して実験結果を正確に表現することができる。 実験結果を理論的に考察し、一連の結果を報告書としてまとめることができる。 る。口	
コース専門科目	電気電子工学実験2		©				0		計画的かつ安全に実験を遂行し、実験対象の特性の検証に適切なデータ収集ができること。 実験対象の特性及び原理を理解すること。 理解した事項を実験結果に基づいた論理的なレポートとしてまとめられること。	
	電気電子工学実験3		©				0		1. 各実験テーマについてそれぞれ下記を目標とする。 1)正弦波発振回路を設計・製作できる能力の養成および動作原理の理解 2)能動フィルタを設計・製作できる能力の養成および動作原理の理解 3)変復調回路の動作原理の理解 4)A/D変換回路, D/A変換回路の動作原理の理解 5)マイクロ波計測の基礎原理の理解およびマイクロ波デバイスの設計技術の理解 6)C-V(容量-電圧)法を用いた半導体の不純物分布測定に関する測定原理の理解および測定技術の獲得 2. 実験課題の現象とその物理的意味を理解する。 3. 実験機器を正しく操作できる。 4. 作図, 作表を含め, 技術ドキュメントを作成できる。	
	電子物性工学	0	©				0		物質の性質を微視的立場から理解できる。 物質の性質を、巨視的・微視的観点両方から相互に関連づけて理解できる。 物質量の単位・次元を把握できる。 物質の示す誘電的・電気的・磁気的・光学的性質などの基礎物理現象が理解 できる。	
	電子デバイス	0	0						半導体の基礎物性を理解する。 半導体接合の特性を理解する。 電界効果トランジスタの動作原理を理解する。 種々の電子デバイスの特徴を理解する。	
	光デバイス工学	©	©			0	0		半導体の基本的用語を理解していること、半導体レーザ、光検出器の構造と原理を理解していること、CCD フォトセンサーを理解していることを到達目標とする。	
	パワーエレクトロニクス	0	©						パワーエレクトロニクス技術の概要が把握できる。 半導体素子の種類と特性およびそれらを活用する上での基本事項を修得する。 半導体スイッチによる各種電力変換回路の基本動作と基本特性が理解できる。 半導体電力変換回路を用いた応用に関する基本動作が理解できる。	
	発変電工学	©	©						エネルギー資源を説明できる。 各種発電所とその発電方式を説明できる。 発電による環境への影響を説明できる。 再生可能エネルギー発電を説明できる。 変電所設備,変圧器を説明できる。	
	照明電熱工学	0	0						各種光源の特性を理解して、屋内外における簡単な照明設計ができる 各種電熱機器の特徴を理解し、基本的な電熱計算ができる	
	高電圧工学	0	©						高電圧に関連する基礎現象を理解して、放電現象と絶縁破壊について説明できる 高電圧の発生方法、計測方法、応用について説明できる	
	通信工学	©	©				0		アナログ通信方式の基本を理解する。 ディジタル通信方式の基本を理解する。	
	ディジタル信号処理	0	0						スペクトル解析の基礎を修得する。 離散時間信号の考え方とその変換を理解する。 ディジタル信号処理の手法とその応用例を理解する。	
	制御システム解析	©	©						基本的な行列演算をプログラミングできるようになる。 コンピュータを利用した制御系の解析および設計の基本を身につける。	
	電磁波工学	©	©				©		分布定数回路の基本的性質を理解すること。 伝送線路のインピーダンスを理解し、基本的な計算ができること。 ダイポールアンテナ等の原理を理解し、基本的な計算ができること。	
	パルス・ディジタル回路	0	0				0		能動素子をスイッチとして利用できる。 波形整形回路、パルス発生回路の動作を説明できる。 基本論理ゲート回路の動作を説明できる。 タイミングチャートで論理回路の動作を表現できる。	
	プログラミング演習	0	©						C言語のポインタ、構造体の利用技法を理解する。 関数を用いたC言語プログラム作成手法を習得する。 アルゴリズムの設計手法と基本的データ構造を習得する。	
	電子回路設計	©	©			0	©	0	オペアンプを用いたアナログ電子回路設計およびオペアンプ回路の設計を行う。 到達目標 1. オペアンプICの機能を説明できる 2. オペアンプICを用いた回路を設計できる 3. オペアンプ回路を設計できる 4. 回路シミュレータを用いて電子回路設計が行える	
	マイコンシステム設計	©	©				0		マイクロコンピュータ回路の動作原理を理解する マイクロコンピュータ回路を設計できる マイクロコンピュータ回路を動作させることができる	

《理工学部 理工学科 電気電子システムコース》

・ディプロマ・ポリシーをさらに細分化している場合には、それを項目として用いることができる。

								らに細分化している場合には,それを項目として用いることができる。	
	ディプロマポリシー	【1. 知識•理解】		【2. 汎用的技 【3. 態度・志向性】		【4. 統合的な学習経験と創 造的思考力】			
科目名		学、及び電気電子工学に関する確かな知識と技術を活かすことがで	工学の野(物電の サイスルギーン 大学の性気、ボージを 大ので 大ので 大ので 大ので 大ので 大ので 大ので 大ので 大ので 大ので	地域社会・国際社会で活成するための、基礎的コミュニケーション能力と自ら主体的・情報を収集・	養, 高い倫理 観と強い責任 感を有する。	のたが、ために動き、かったが、たがでイでインとのいりをからいます。ことのではいいますがでいますが、ことができまれば、これができませばいいいは、これができませば、これができませば、これができままない。これができませば、これができませば、これができませば、これができませば、これができませば、これができませばいいいは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまさんでは、これができまないができまない。これができまないができまない。これができまないができまないができまない。これがでは、これができまないができまないができないができないができないができないができないができないができないができ	(1)世界規模の産業構造や社会経済のでいる。 専門的課題についての	(2)デザイン能 カ, 及びプロ ジェクト型研 究遂行能力を	
	設計製図	0	©				©		機器設計の基礎(材料、構成法等)を理解すること。 変圧器の基本的な設計ができること。 第三角法による立体表現の基礎を理解すること。 機械製図ならびに電気製図の基礎を理解すること。
	電気エンジニアリングデザイン演習			0		0	0	0	グループワークを通した、エンジニアリングデザインの基本能力の獲得
	電気施設管理及び法規	©	0		0				電気事業法の大要を説明できる。 技術基準の基本について説明できる。 電気施設管理の方法について説明できる。
	無線設備管理及び法規	©	©		0		0		第2級海上及び第1級陸上特殊無線技士に必要な電波法を理解すること。 無線局の開設・運用・管理方法を理解すること。
	電気電子工学特別講義	0	0	0	0		0		電気電子工学の先進的な技術動向の一端を知る。 先端的技術を支える周辺の専門知識技術等の重要性を知る。 第一人者による専門家の技術開発に取り組む考え方を知る。 社会における電気電子工学の役割や技術者の責任・倫理を自覚する。
	電気·電子材料工学	©	©						導電体、抵抗体、半導体、超伝導体、磁性体、誘電体の物性と特性を理解し、これらの材料の現在及び未来への応用について理解する。
	通信応用工学	0	©						実際の有線通信システムの概要と適用領域を理解する。 実際の無線通信システムの概要と適用領域を理解する。 コンピュータネットワークの概要と適用領域を理解する。 主な通信用装置/機器の概要を理解する。
	集積回路工学	©	©						CMOSプロセスを理解し、レイアウト設計が行える レイアウトとMOSトランジスタ特性の関係を理解する 基本CMOS論理回路のレイアウト設計、回路シミュレーションが行える ALU、PLA等の論理設計が理解できる
	雑誌講読		0	0			0		英語の専門用語を学ぶ。 自主的・継続的な英語学習能力を養う。 読解した英文テキストの内容についてプレゼンテーションができる。 指導教員や学生間で発表内容説明に関してコミュニケーションができる。
	卒業研究		©	©	©	©	©	©	研究活動を通して、技術者として社会への貢献と責任、倫理観について考える。 研究に必要な文献等 (外国語文献を含む) を調査・読解する能力を養う。 自主的・継続的な学習能力を養う。 研究を計画的に遂行し、的確に結果を解析し、考察する能力を養う。 研究成果をまとめ、論文として記述する能力を養う。 論文内容の適切なプレゼンテーションを行う能力を養う。