

表面改質技術を応用した 材料の高機能化

徳島大学院 ソシオテクノサイエンス研究部 先進物質材料部門 材料加工システム (工学部機械工学科) 米倉大介

目次

- ■表面改質技術とは
- ■主な研究トピックの概要
- ■粉体の付着・堆積を抑制できる表面処理

表面改質技術

【表面改質技術】

熱処理・機械加工・化学処理・被覆処 理などによって、母材とは異なる性質を 材料表面に付与する技術.

【用途】

耐摩耗性,潤滑性,耐腐食性,耐疲労 性の改善、機能性表面の創成、

3

The University of Tokushima

代表的な表面改質技術

本研究室のキーワード

表面改質,強度,薄膜 **KEYWORDS:**

The University of Tokushima <

本研究室での取り組み

5

- ●耐摩耗性
- ●気体透過抑制
- ●耐腐食性
- ●粉体付着抑制
- ●低摩擦係数 ●触媒作用 etc.

機能向上

表面改質処理

- ・プラスマ
- ●電子ビーム
- •機械的処理
- •熱処理 etc.
- ●静的強度
- ●疲労強度
- ●はく離強度
- ●環境強度etc

機能の両立 機械材料 High Performance &High Reliability

安全性と

安心•

安全な

The University of Tokushima

現有設備

試料作成

アークイオンブレー ティング装置

傾斜対向型DCマグネ トロンスパッタ装置

精密切断機

研磨機

スパッタ式コーター

マッフル炉

真空炉

超音波ハンダ接合機

物性評価

走查型電子顕微鏡

光学顕微鏡

表面粗さ計

FT-IR

接触角測定器

近赤可視紫外分光器

EDX

X線回折装置

ホール効果測定器

機械的特性

油圧サーボ式疲労試験機

4連式回転曲げ疲労試験機

小型引張試験機

摩擦摩耗試験機

スクラッチ試験機

ポテンショスタット

自動ふるい機

その他,大学所有の設備多数

The University of Tokushima

材料の高強度化,高信頼性化

7

- ●溶接材の疲労特性
- ●薄膜の密着強度・靱性

図 破面と接触面観察例 (接触荷重 1500N, σ_{\max} = 300MPa,(a) N_f =3.7x10 5 cycles,(b) N_f = 1.2x10 6 cycles,(c) N_f =8.3x10 5 cycles).

機能性薄膜の開発

- •可視光応答光触媒
- •Si-O-N系ガスバリア膜による酸化遅延技術

るの強

9

The University of Tokushima

新しい表面処理技術

- 粉体付着抑制表面処理技術
- ●電子ビームを用いた新しい 表面改質技術

粉体による流路の閉そく問題(共同研究事例)

(有)ダイカテックとの共同研究

粉体取扱装置の課題

● 粉体の付着堆積による 流路の閉そく。

閉そくの解消法

- ●<u>打撃</u> →騒音,装置損傷.
- 撹拌・噴射
 - →装置の複雑化,過剰な 摩耗粉など。
- ●コーティング

11

→異物混入。除去困難。 食品産業,高純度素材用 に使えない。

The University of Tokushima

1

静電気や湿気が付着の主要因?

Fig. Result of adhesion tests for various pretreated powders.

静電気力, 液架橋力が主要因ではない!

平滑な表面にすれば付着抑制?

Fig. Result of adhesion tests.

Fig. Typical surface images of steel plate after adhesion test. (Nominal particle size: 1.0 µm)

鏡面状態

●粉体の付着堆積量

ある程度粗い表面

●粉体の付着堆積量: 減る場合がある.

The University of Tokushima

代表的な付着の要因

13

- 静電気力 (Electrostatic force) (1)
- 液架橋力 (Liquid Bridege Force) 2
- ファンデルワールスカ (Van der Waals Force)

Electrostatic forces

Non-conductor

Liquid bridge bonds

Van der Waals forces

Dipole molecule

Surface charge

ファンデルワールスカ

•ファンデルワールスカ(ロンドン分散力)

- ・分子間に作用する力.
- ・常に物体間に作用する.
- ・表面粗さに敏感.

15

The University of Tokushima

粒子間のファンデルワールス力 F_{ad}

$$F_{ad} = -\frac{Ad}{12z_0^2} \implies d = \frac{d}{d_1}$$

A :ハマーカー定数 J

$$A = 24 (0.165 \text{nm})^2 \gamma$$
 $A_{12} = \sqrt{A_1 A_2}$

 z_0 : 最も安定な分離距離 約 $0.3 \mathrm{nm}$

↑:表面エネルギ

【前提】各粒子の表面:平滑

ファンデルワールスと表面粗さ(1)

●表面粗さを考慮したVan der Waals力(修正Rumpfモデル)

$$F_{\rm ad} = rac{AR}{6H_0^2} \left[rac{1}{1 + R/(1.48 {
m rms})} + rac{1}{(1 + 1.48 {
m rms}/H_0)^2}
ight]$$
 直接項 間接項

A:ハマーカー定数 [J]

R: 粒子半径

 $H_{ heta}$: 最も安定な分離距離 $0.3~\mathrm{nm}$

rms:二乗平均平方根粗さ

$$rms = \sqrt{\frac{32\int_0^{\lambda/4} y^2 r_1 dr_1}{\lambda^2} k_p}$$

Rabinovich, Y. I., Adler, J. J., Ata, A., Singh, R. K. and Moudgil, B. M., Adhesion between Nanoscale Rough Surfaces, I. Role of Asperity Geometry, *Journal of Colloid and Interface Science*, Vol. 232, (2000), pp. 10-26.

17

The University of Tokushima

ファンデルワールスと表面粗さ(2)

Fig. 修正Rumpfモデルの計算例

Rabinovich, Y. I., Adler, J. J., Ata, A., Singh, R. K. and Moudgil, B. M., Adhesion between Nanoscale Rough Surfaces, I. Role of Asperity Geometry, *Journal of Colloid and Interface Science*, Vol. 232, (2000), pp. 10-16.

表面処理による粉体付着堆積抑制技術

「粉体取扱装置用鋼製部材及び粉体取扱装置」 特願2007-073841,特許第4064438号,2008年,加藤雅裕,米倉大介,大西賢治

- コーティングを用いない。研磨処理のみ、
- ステンレス鋼の摩耗粉は除鉄装置で排除。
- ■どのような表面の時に最大限の効果を得られるか?

19

The University of Tokushima

実験方法 - 付着試験および表面観察 -

使用したSiO₂粉体粒径分布

Fig. Particle size distribution.

21

The University of Tokushima

付着試験結果

Fig. Result of adhesion tests.

- Condition E Condition F mirror polish
 - ●効果の出やすい粒径がある.
 - ●効果の出る表面粗さがある.

強固に付着した粒子のSEM観察

- ●単体で鋼板に付着
- ●1 μm程度以上の比較的大きな粒子と付着

23

The University of Tokushima

強固に付着した粒子の粒径分布

強固に付着した粒子

付着量は異なるものの…

- ●0.4µm~1µm程度の粒径
- ●もとの粒径分布と無
- ●鋼板表面粗さとも無関係
- ●呼び粒径0.5µmの粉体:
 - →少ない堆積

●0.4µm~1µm程度の粒子:

鋼板-粒子間の強固な付着

●1µm程度以上の粒子:

Fig. Particle size distribution on the steel plates after adhesion test.

付着・堆積抑制のメカニズム

どのような粉体でも付着抑制可能か?

- 効果のない粉体もある.
 - ex.) 水分・油を多量に含むもの。
- 穀物類は効果が出やすい。
 - ex.) 天ぷら粉など.

粉体の付着・堆積・滑落のメカニズムを明らかにし、表面処理 の効果を事前に推測できる設計指針の構築を目標。