静電容量式地盤変状センサ

徳島大学大学院STS研究部

上野 勝利

共同研究者

金沢大学 高原利幸

研究協力者(徳大博士前期生、4年生)

2010年度 小川洋平、石川恭平、杉山栄典、須藤孝彦

2011年度 野々垣遥弥、古南綾大

2012年度 松井雄揮、石川翔太

自己紹介

- 氏 名 上野 勝利 (うえの かつとし)
- 所属 徳島大学大学院ソシオテクノサイエンス研究部 エコシステムデザイン部門 社会基盤システム工学大講座
- 研究室 地盤工学研究室
- 職 位 准教授
- 学 位 博士(工学)(東京工業大学)
- 出身北海道大学工学部土木工学科 同大学院修士課程土木工学専攻
- 連絡先 ueno@ce.tokushima-u.ac.jp Tel 088-656-7342

静電容量式地盤変状センサ

研究代表者 徳島大学大学院 上野勝利

研究目的

長大な土構造物(盛土、堤防、護岸等)や自然斜面にセンサを埋設し、浸水などの劣化要因に早期に対処することにより、維持管理費の低減と、地盤災害を未然に防ぐことを最終的な目的としている。

特徴

地盤計測用静電容量計を開発し、センサとして活用

- ☆ 高精度(3fF)・広レンジ(32bit)
- ☆ 浮遊容量キャンセル
- ☆ センサ設計の自由度が高く、安価

研究内容

室内実験による空洞化再現実験現場計測

(河川堤防水分変化、平地の地下水位計測)

水位、浸水や空洞発生を検出するセンサが必要

対象

道路、堤防、護岸、斜 面、盛土、宅地など

特徴

長延長、広範囲

相反する要求

高精度

埋殺し、 安価

多点計測

高感度 高分解能

広レンジ

点から線へ

10cm, 1m, 10m, 100m, ...

水に高感度

ε,比誘電率 空気 土粒子 約3 約80 静電容量とに着目

電極長さ

 $c = \varepsilon_r \varepsilon_0 f(l, d)$

測定レンジの 上限を撤廃

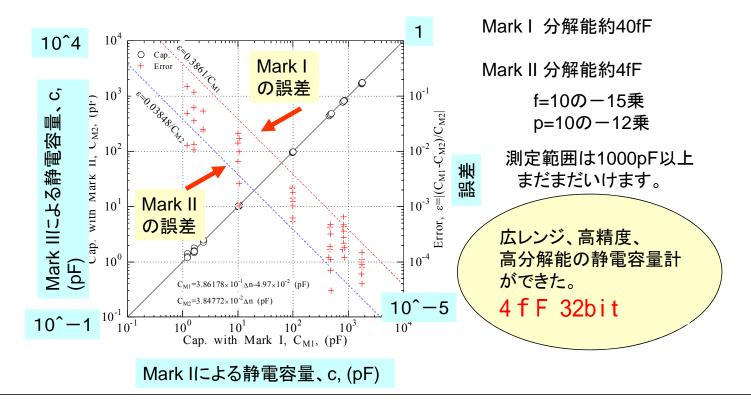
電極間隔:検知範囲と分解能

アナログ式静電容量計の問題

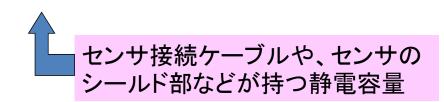
分解能とレンジの制約 不安定 浮遊容量の影響 扱いが難しく高価

マイコン式を開発し解決

3~4fF分解能 32bitレンジ上限なし 24日間で変動120fF程度 浮遊容量キャンセル 扱いが容易で安価

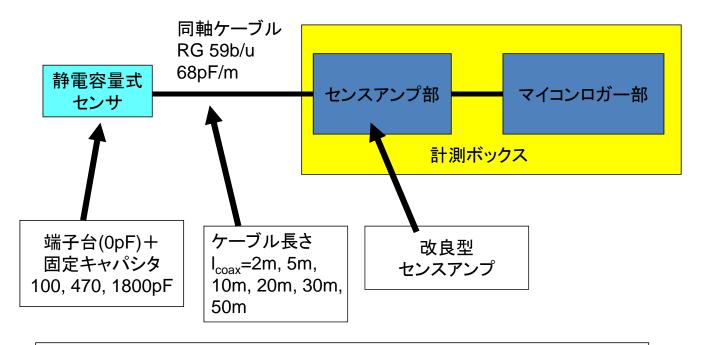

解決すべき課題

- •実用的な測定を実現するためには、次の問題を解決する必 要がある。
- 理論上ダイナミックレンジに上限がなく、十分に精細 な分解能を持つこと。
- 浮遊容量の影響を受けず、微小な静電容量変化を正 確に計測できること。
- 3 温度変化などの影響を受けにくく、長期安定している こと。あるいは変動をキャンセルできること。

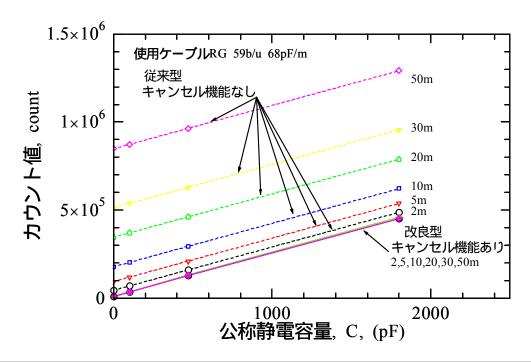

浮遊容量:センサ接続ケーブルや、セ ンサのシールド部などが持つ静雷容量

課題1 ダイナミックレンジと分解能 センスアンプの精度検証

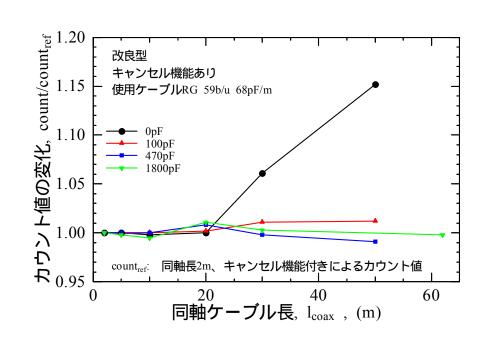
ディップトマイカコンデンサあるいはCH級積層セラミックコンデンサを使用 感度向上した同型センスアンプによる検定



課題2 浮遊容量のキャンセル


- 方法1 高分解能、広レンジ、高線形化 により、浮遊容量の影響を低減
- 方法2 浮遊容量をアナログ的にキャン セルするセンスアンプの開発

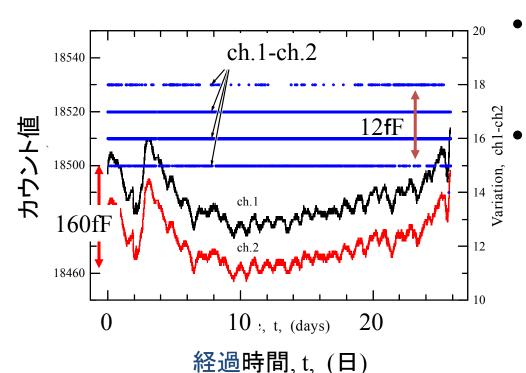
キャンセル機能の検証手順


端子台に公称値100,470,1800pFの固定キャパシタを取り付け、2m~50mの同軸ケーブルを介してセンスアンプに接続した。そのときのシステムの測定値(カウント値)の変化を、改良型のセンスアンプを用いて実際に測定した。 従来型のカウント値は校正係数による計算値であり、参考値として併記した。

キャンセル機能の有無による比較

キャンセル機能を有する改良型では、センサ接続に用いた同軸ケーブルの長さによらず、公称静電容量に比例するカウント値が得られている。24個の測定値による回帰分析の結果、重相関係数は0.9998であった。 従来型では、ケーブル長に応じてカウント値の上乗せが生じている。

同軸ケーブル長の計測値への影響



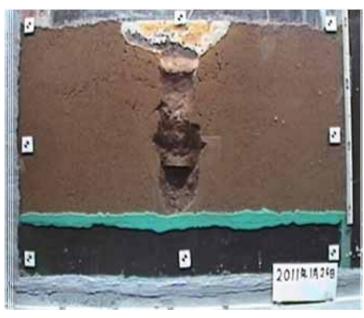
同軸ケーブル長によるカウント値の変化を示す。縦軸は、各ケーブル長におけるカウント値をlcoax 2mのカウント値で正規化したものである。

同軸ケーブル長20m程度まで、影響は±1%程度に収まっている。測定対象の容量が小さいOpFの結果を除き、50m程度まで影響は小さい。

本手法により地中にセンサを埋設する際、ケーブルの影響を排除することができる。

課題3 センスアンプの安定度 分解能4fF 32bit

- 約72pFの同軸 ケーブルを測 定。
- 温度変動は見られるが2ch間の相対誤差は最大12fFと少なく安定していた。


ここまでのまとめ

- 静電容量型センサの測定器として必要な、3つの課題を解決できた。
- 課題1 分解能3fF ダイナミックレンジ32bit
- 課題2 20~50m程度までの同軸の容量を キャンセル
- 課題3 長期安定度は24日間で120fF程度の変化
 (測定対象の温度依存性を含む)
 CH間変動12fF ->分解能の3倍程度

室内実験による浸水・空洞発生の再現

空洞発生実験の結果

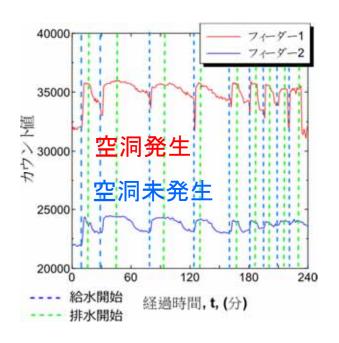
空洞の発達過程

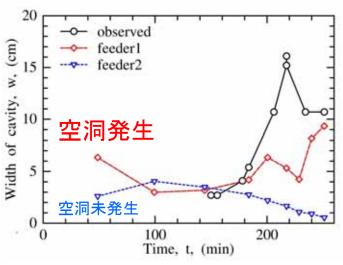
CASE 2

- 1. 空洞の芽が発生
- 2. 水位の上昇と共に空洞が発達
- 3.空洞の上昇
- 4.天盤の崩落
- 5.浸水と排水を繰り返すとチムニー状の空洞が形成

フィーダ型センサと発生空洞

発生した空洞とフィーダセンサ (実験終了後、平面)

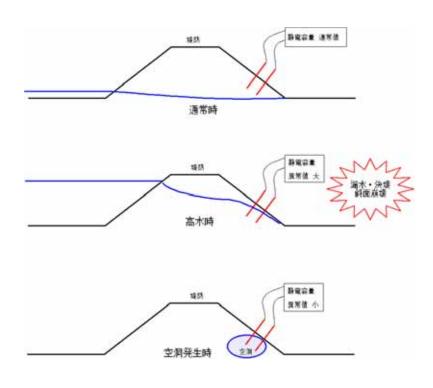

発生した空洞とフィーダーセンサ(正面)


フィーダ型センサ

フィーダー線をセンサとして用いた。 地盤内の水道にもならず、締固めも良 好に行えた。

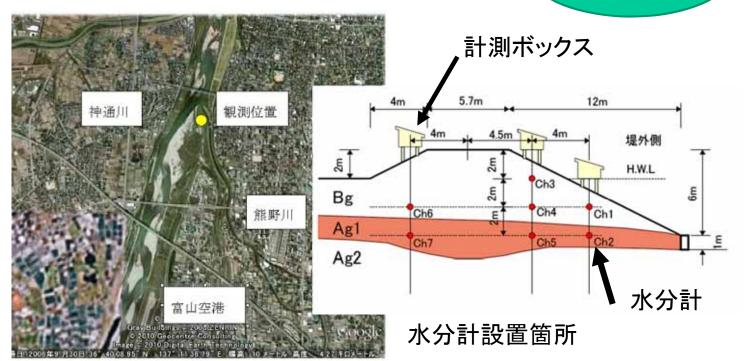
実験結果

フィーダー1 空洞発生個所 フィーダー2 空洞発生せず


1サイクルのカウント値の変動から、 空洞幅を推定

空洞幅(cm)=1サイクルでの変動/ センサを1cm水浸した時の変動

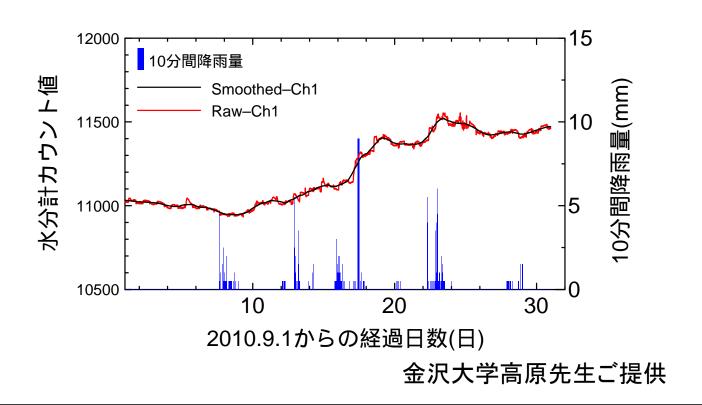
空洞未発生個所では変動が収束し、空洞発生個所では変動が増加する。


現場計測例

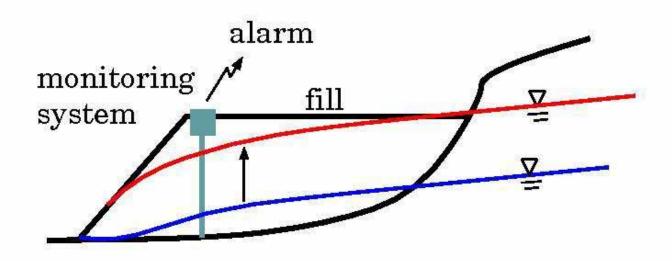
堤防の漏水・空洞モニタリング

熊野川堤防内水分計測1)

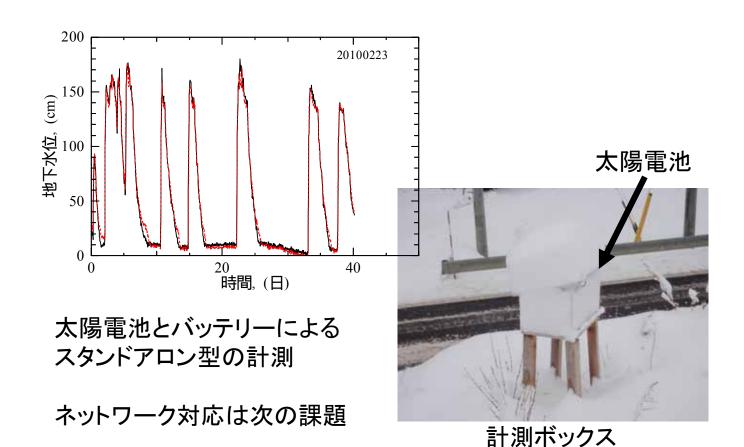
新たなサイト を準備中

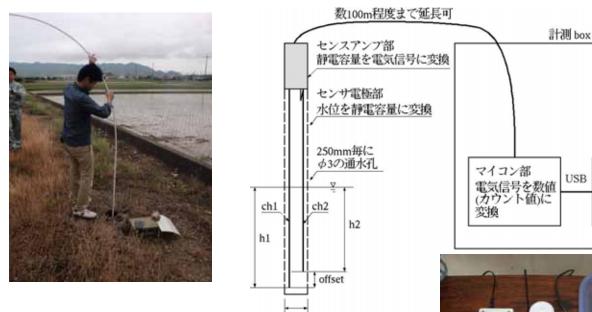


計測サイト


金沢大学高原先生ご提供

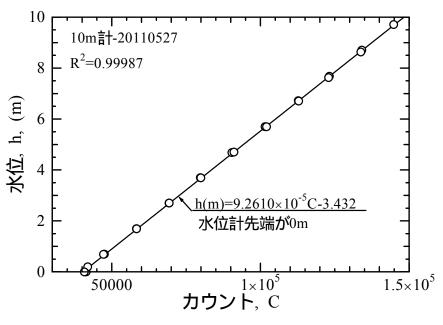
1)高原、上野、杉本(2010);高精度静電容量式水分計による堤体内水分測定と降雨量の関係, 第45回地盤工学研究発表会, pp. 139-140, 2010.8.


堤防の水分変化


盛土のモニタリング

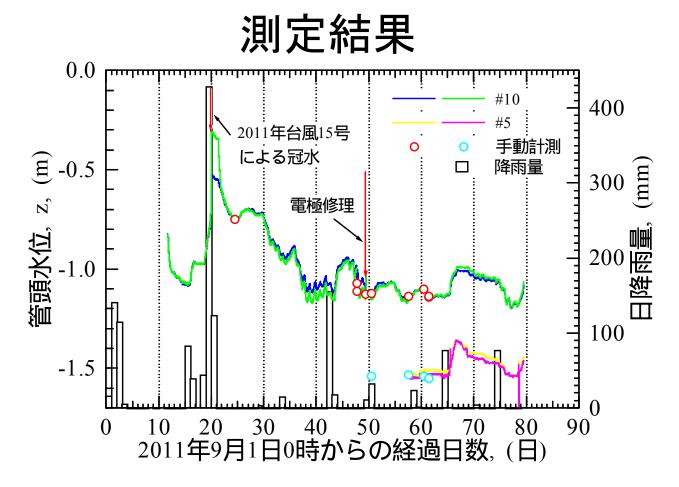
盛土内地下水位計測(3m計)

地下水位の常時モニタリング



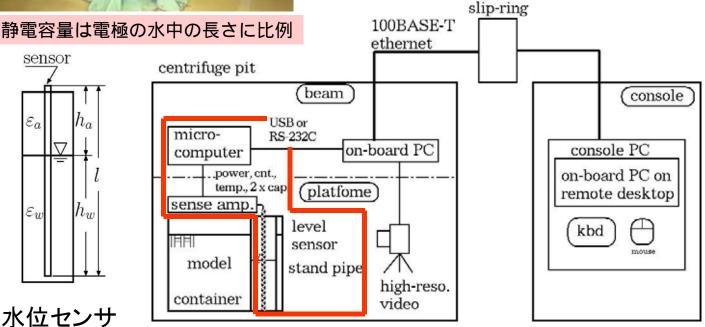
10m計設置の様子 白いパイプ状のものが水位計電極。 外径16mm、フレキシブルなので、 簡易サウンディング孔などへ設置可。

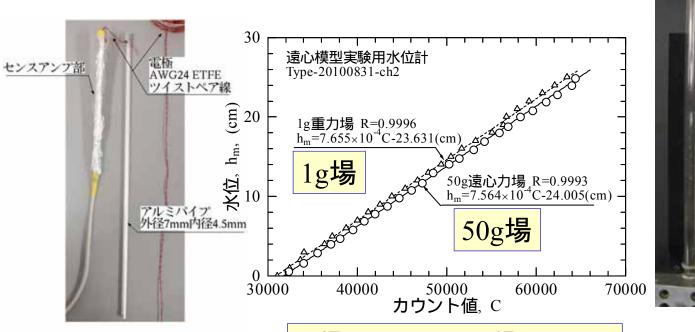
WiFi 端末


静電容量式地下水位計(10m計)

検定結果 水位上昇および降下過程

検定用スタンドパイプ (一部)

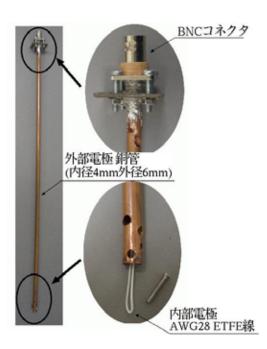

原位置での地下水位計測例


遠心模型実験用水位計

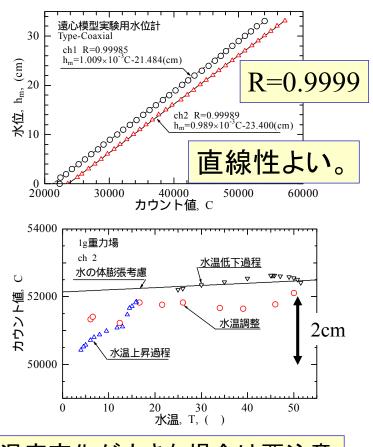
利点: ①模型に応じて最適なセンサ を製作できる。

> ②重力場から遠心力場まで 計測可能。

遠心模型実験用水位計1



平行2線型 水位センサ


1g場R=0.9996、50g場R=0.9993 と十分な精度

検定具

遠心模型実験用水位計2

同軸型 水位センサ

温度変化が大きな場合は要注意

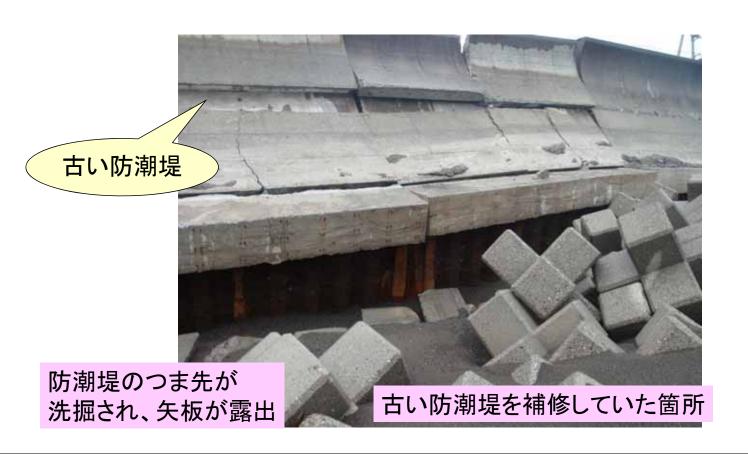
想定される用途(応用分野)

- ① 従来の機械式水位計の置換(地すべり地等)
- ② 堤防、斜面、谷埋め盛土等の浸水・漏水監視
- ③ 水浸排水繰返しによる路面下、埋設管、樋門、樋管、 堤防、護岸などの空洞発生監視
- ④ 廃棄物最終処分場等の地下水位管理や簡易サウン ディング跡孔での地下水位監視
- ⑤ 浸水・空洞化センサを具備した建設資材(埋設管、 ドレンパイプ、パラペット、擁壁、ジオテキなど)
- ⑥ 模型実験用の小型高精度なカスタムセンサ

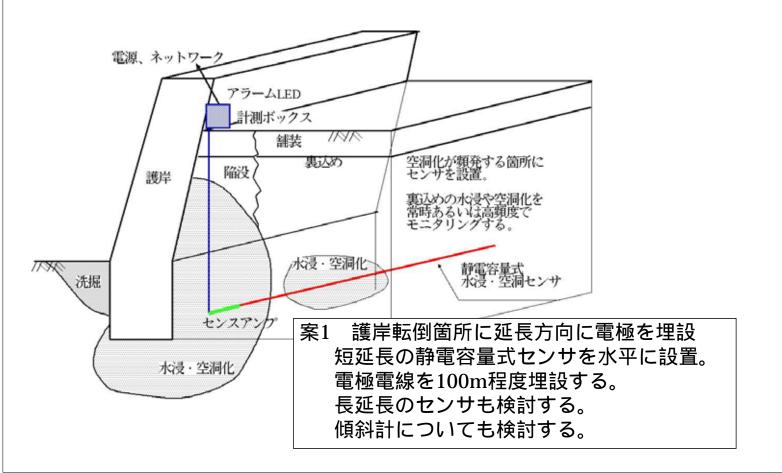
パートナーへの要望

実用化に向けて次のような方々との 共同研究等を希望

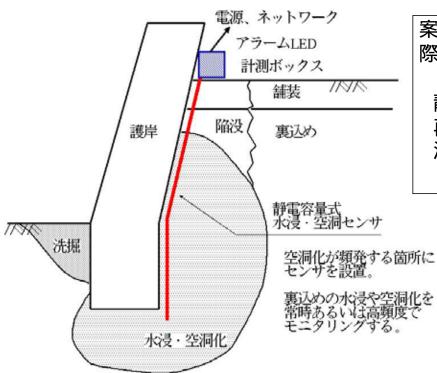
- ☆ ロギング装置の試作、無線化などにご協力いた だけるメーカー
- ☆ 建設資材のスマート化をお考えのメーカー
- ☆ 道路や護岸、防潮堤その他社会基盤の維持 管理をお考えの管理者、自治体やコンサルタント
- ☆ ホームセキュリティサービス


想定している応用について

平成23年台風6号安芸市穴内漁港防潮堤被害


洗掘により破損した防潮堤

モニタリング案1


河口部の防潮堤

つま先部が洗掘され、 底面が浮き上がっている

モニタリング案2

案2 空洞陥没箇所を補修する 際に設置

陥没箇所の埋め戻し時に 静電容量式センサを埋設し 再発防止のため継続的に計 測する。